Intra- and interspecific discrimination of Scorpaena species from the Aegean, Black, Mediterranean and Marmara seas

Author:

Yedier SerdarORCID,Bostanci DeryaORCID

Abstract

This study was conducted to discriminate five Scorpaena species and populations of each species according to morphometric characters. A total of 1865 fish specimens were collected from the eight locations in the four Turkish seas: Antalya, Balıkesir, Çanakkale, Hatay, İzmir, Marmara Ereğlisi, Ordu and Şile. In the study, 26 morphometric traits were measured for intra- and interspecific discrimination of five Scorpaena species. The data were subjected to analysis of variance, principal components analysis (PCA) and canonical discriminant analysis. As results of the PCA, 10 traits for S. maderensis and S. scrofa, 12 traits for S. elongata and 13 traits for S. notata and S. porcus were found to be important for intraspcific discrimination. The overall classification scores of intraspecific discrimination were determined as 94.6% for S. elongata, 90.5% for S. maderensis, 96.7% for S. notata, 96.5% for S. porcus and 92.2% for S. scrofa. The PCA indicated that 13 morphometric measurements among the 26 traits are important in the interspecific discrimination of five Scorpaena species. The cross-validated canonical discriminant analysis was correctly classified as 97.4% at the Scorpaena species level. The discrimination of correctly classified species ranged from 94.8% to 100%. Finally, we demonstrated that the morphometric characters examined in the present study can be used successfully in the intra- and interspecific discrimination of Scorpaena species from different habitats.

Funder

Ordu Üniversitesi

Publisher

Editorial CSIC

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3