Design of an explicit crack bridging constitutive model for engineered cementitious composites using polyvinyl alcohol (PVA) or polyethylene (PE) fiber

Author:

Wang Z.ORCID,Li B.ORCID,Li L.ORCID,Zhang Z.ORCID

Abstract

This paper aims to establish an explicit crack bridging model that can link engineered cementitious composites (ECC) behavior from single fiber to single crack scale, which is great of designing ECC featuring pseudo tensile strain hardening and multiple cracks expanding by tailoring microstructure and materials selection. In this study, fiber bridging stress was divided into three parts including fiber bridging stress with no rupture, fiber debonding fracture stress, and fiber pullout fracture stress. Subsequently, the fundamental crack bridging model was emerged when fiber bridging stress with no rupture subtracted from the fiber rupture stress in debonding and pullout stage. Moreover, two-way pullout and Cook-Gordon effect were also considered to establish the complete model. It was found that the two-way pullout situation of polyvinyl alcohol (PVA) fiber has a significant influence on the crack opening width due to its slip hardening property, while the Cook-Gordon effect presents a faint crack width increment for PVA-ECC. However, the Cook-Gordon effect makes a significant contribution to the crack opening width of the composite produced by polyethylene (PE). This building intelligible model presents a better prediction for ECC through the comparison of experimental data or real average crack width in previous models, thus confirming the validity of this model.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Sichuan Province

Publisher

Editorial CSIC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3