Early-age compressive strength and dynamic modulus of FRC based on ultrasonic pulse velocity

Author:

Castillo D.ORCID,Hedjazi S.ORCID

Abstract

Due to the increasing use of rapid construction methods and the challenges of maintaining construction schedules, a growing demand exists for procedures that can assure quality of work without sacrificing the pace of construction. The quality control of construction materials specifically, the mechanical properties of concrete are among the most important concerns in today’s construction industry. In the present study, the correlation between fiber-reinforced concrete’s compressive strength and dynamic modulus to its ultrasonic pulse velocity is investigated at early ages up to 7 days after mixing. An experimental program involving 189 FRC specimens were designed containing different types of structural fibers, fiber volume fractions, and water-to-cement ratios. Mathematical equations were developed to predict the early-age compressive strength and dynamic modulus of four different types of fiber-reinforced concrete based on ultrasonic pulse velocity. The predicted compressive strength and dynamic modulus from the proposed equations showed good agreement with the measured ones.

Publisher

Editorial CSIC

Subject

Mechanics of Materials,General Materials Science,Building and Construction

Reference39 articles.

1. Early-age properties of concrete: Overview of fundamental concepts and state-of-the art research;Nehdi; Constr Mater 164 [2],2011

2. Pane, I.; Hansen, W. (2002) Early-age creep and stress relaxation of concrete containing blended cements. Mater. Struc. 35, 92.

3. Neville, A.M. (2004) Properties of Concrete, 4th edition. Wiley Harlow, New York, USA, (2004).

4. American Society for Testing Materials (2015) Standard specification for fiber-reinforced concrete. ASTM C1116. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA, (2015).

5. American Society for Testing Materials (2012) Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA, (2012).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3