Optimization of sponge iron (direct reduced iron) production with Box-Wilson experimental design by using iron pellets and lignite as reductant

Author:

Sönmez İbrahimORCID,Şahbudak KemalORCID

Abstract

Turkey’s iron ores may be used to manufacture sponge iron, and the country’s coal resources, which are plentiful despite being of poor quality, can be used as a reducing agent. With such a production, Electric Arc Furnace based on scrap imports, will be an alternative raw material for steel production, and this will create high value due to the usage of domestic resources. In this study, sponge iron production was tried to be optimized by using local sources. For this purpose, the effects of time, temperature and [CFix/FeTotal] weight ratio on the Reduction Degree (%) of the important parameters effective in the production of sponge iron by using Divriği Iron Pellets and Dodurga Lignite as a reductant were studied using a Box-Wilson experimental design. The optimum parameters were determined as 82.59 min, 996.73 °C and 0.49, and the highest Reduction Degree (%) value was calculated as 96.46%. The sponge iron obtained with a 71.91% Reduction Degree contains 97.12% Fe, of which 7.12% is oxidized. It is evident that higher Fe contents may be attained with research carried out in optimum parameters.

Publisher

Editorial CSIC

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Reference38 articles.

1. Properties and features of direct reduced iron;Anameric;Miner Process Extr Metall Rev 28 (1),2007

2. Babich, A., Senk, D., Gudenau, H.W., Mavrommatis, K.T. (2008). Ironmaking. RWTH Aachen University, Department of Ferrous Metallurgy, Aachen, Germany.

3. Çamcı, L., Aydın, S., Arslan, C. (2002). Reduction of iron oxides in solid wastes generated by steelworks. Turkish J. Eng. Env. Sci. 26, 37-44. https://aj.tubitak.gov.tr/engineering/issues/muh-02-26-1/muh-26-1-5-0012-2.pdf.

4. Chatterjee, A. (2012). Sponge Iron Production by Direct Reduction of Iron Oxide. 2nd ed., PHI Learning Private Limited, Delhi, India.

5. Reduction of hematite (Fe2O3) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: A multistep kinetics study;Chen;Powder Technol,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3