Abstract
The automated boat’s deckhouse is made of deforested wood and glass fiber, harming producers, fishermen, and marine life. In context, researchers are attempting to make composites from waste and replace synthetic materials with natural composites. In the present work, a Carbon/Mg/Si/polyester hybrid composite is developed as a potential replacement for wood in marine deckhouse construction. Impact, tensile, flexural, Rockwell and Brinell hardness were tested using ASTM standards, as well as weight absorption in fresh and seawater. Scanning electron microscopy (SEM), microanalysis (EDAX), Fourier-transform infrared spectroscopy (FTIR) and Raman Spectroscopy techniques were used to identify microstructure, elements, and functional groups. Thermogravimetric analysis and differential scanning calorimetry (DSC) are used to determine the thermal stability and heat intake/rejection of the hybrid composite. Novel hybrid composites with Mg-Si fillers improve the mechanical strength, adhesion, corrosion resistance, and deckhouse life span in marine environments.