Investigation of metallurgical properties of Al-Si-Mg casting alloys with integrated computational materials engineering for wheel production

Author:

Yağcı TuğçeORCID,Cöcen ÜmitORCID,Çulha OsmanORCID,Armakan ElvanORCID

Abstract

In this study, integrated computational materials engineering, which is one of the new generation approaches in materials science, was used in the production of aluminum alloy wheels by low pressure die casting method. In casting alloys, the efficiency of grain refinement provided by master alloys added to the melt decreases with increasing silicon content of the alloy. In this context, as-cast properties of silicon reduced (Si: 5.0 wt.%) alloys with different Mg ratios (Mg: 3.0, 5.0, 7.0 wt.%) are discussed using integrated computational materials engineering approaches. It has been evaluated whether the examined alloys can be an alternative to the AlSi7Mg0.3 alloy, which is currently used traditionally in the production of aluminum-based wheels, with their microstructural and mechanical properties. The study consists of three stages which are computer-aided production, pilot production, testing and characterization studies. In computer-aided production, original sub-eutectic compositions were determined in types and amounts of alloying elements, alloy designs were realized and a database was created with a computational materials engineering software. Then, low pressure die casting analysis were performed in a virtual environment by transferring these data directly to the casting simulation software. Thus, the microstructural and mechanical properties of the wheel were obtained computationally on the basis of the varying alloy composition. In the second stage, the virtually designed alloy compositions were prepared and sample wheels were manufactured by the low pressure die casting method on an industrial scale. In the testing and characterization phase, spectral analyses, macro and microstructural examinations, hardness measurements and tensile tests were carried out. As a result of this study, it was determined that the studied alloys could be used in the production of wheels by the low pressure die casting method considering the metallurgical properties expected from the wheel. In addition, it is thought that the mathematical design of the material with integrated computational materials engineering approaches before casting simulations will play an active role in the competitiveness and sustainability of the aluminum industry in technological conditions.

Funder

Manisa Celal Bayar Üniversitesi

Publisher

Editorial CSIC

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Reference30 articles.

1. Integrated computational materials engineering: A new paradigm for the global materials profession;Allison; JOM 58,2006

2. Thermo-Calc & DICTRA, computational tools for materials science;Andersson; CALPHAD 26 (2),2002

3. Atasoy, Ö.A. (1990). Eutectic Alloys: Solidification Mechanisms and Applications. Istanbul Technical University, Istanbul.

4. Campbell, J. (2003). Castings. 2nd Edition, Londra: Butterworth-Heinemann.

5. Influence of solutionising time on the dendrite morphology and mechanical behaviour of Al-Si-Mg-Ni hypoeutectic alloy;Eby; Silicon 14 (12),2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3