Abstract
Limestone Calcined Clay Cement (LC3) Technology is a low carbon cement that combines limestone, calcined clay, and clinker, aiming to reduce CO2 emissions by 40%-50% during production. In this study, large-scale investigations were conducted to explore LC3 as a potential substitute for conventional cement (CC). Mechanical and durability tests were performed on LC3, comparing results with CC and Pozzolana Cement (PC) concretes. The findings revealed that LC3 concrete exhibited promising early-stage strength similar to CC concrete. However, at 90 days, LC3 showcased a 10% higher strength compared to CC concrete. Additionally, LC3 displayed a remarkable 45% increase in resistance to moisture ingress, indicating improved durability over CC concrete. These results highlight the efficacy of low carbon cement in developing ternary blended cements that offer early strength and enhanced durability, making it a viable eco-friendly alternative in the construction industry.
Subject
Mechanics of Materials,General Materials Science,Building and Construction