Investigation of reinforced concrete members with bond deterioration under tensile load

Author:

Quadri A.I.ORCID

Abstract

Bond deterioration in reinforced concrete (RC) structures is frequently caused by aging, environmental factors, overloading, or poor design. This deterioration may cause the structure to lose its aesthetic, and eventually collapse. The behavior of structures that exhibit bond deterioration is poorly understood and inadequately maintained. The response of RC structures exhibiting bond loss under tension load is presented in this paper. In order to comprehend the impact of bond loss in RC composite, the RC system was first built for a pullout. It was then expanded to the nib corner of RC dapped end beams. Additionally, the system was analytically examined using 3-dimensional FEmodel. The bond loss created a weak zone with internal cracks parallel to the bar’s axis. The nib section separated from the full depth of the dapped end, while the hanger reinforcement resisted the diagonal tension cracks. The dapped section must therefore be given more consideration during monitoring and maintenance.

Publisher

Editorial CSIC

Subject

Mechanics of Materials,General Materials Science,Building and Construction

Reference33 articles.

1. 1. Logemann J, Blonsky ER, Boshes B. (1973). Lingual control in Parkinson's disease. Trans Am Neurol Assoc 98:276-78

2. Swallowing and speech production in Parkinson's disease;Robbins;Ann Neurol,1986

3. Swallowing abnormalities and their response to treatment in Parkinson's disease;Bushmann;Neurology,1989

4. What is "usual care" in dysphagia rehabilitation: a survey of USA dysphagia practice patterns;Carnaby GD;Dysphagia,2013

5. Laryngeal and tracheal afferent nerve stimulation evokes swallowing in anaesthetized guinea pigs;Tsujimura;J Physiol,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3