Implementasi SNA dalam Menilai Popularitas Platform Pemesanan Makanan Online Berbasis Percakapan Twitter

Author:

Wibowo Adriyansyah Juri Setyo,Wibisono Setyawan

Abstract

This research aims to understand the popularity of online food ordering platforms in Indonesia, although the data taken in Indonesian includes allied languages. This research combines the SWARA, WASPAS, and Social Network Analysis (SNA) approaches to achieve its objectives. The problem formulation proposed is how to measure and analyze the popularity of online food ordering platforms based on interaction data on Twitter social media. The SWARA method is used to determine the weight of the evaluation criteria, while WASPAS is applied to rank online food ordering platforms. Meanwhile, SNA is applied to analyze interaction patterns and user preferences for various online food ordering platforms. Twitter was chosen as the main data source because it provides direct conversation data and real depictions, allowing for in-depth and accurate analysis. Through Twitter, research can capture the dynamics of user interactions and how they communicate about various online food ordering platforms. This research aims to provide a strong foundation for decision makers in designing more effective marketing strategies and provide insight into the dynamics of competition in the online food ordering platform industry. The research results show that SNA-based analysis is able to clearly identify interaction patterns and user preferences.

Publisher

Sekawan Institute

Reference15 articles.

1. I. Aminudin and D. Anggraini, “ANALISIS PERINGKAT TOP BRAND OJEK ONLINE MENGGUNAKAN JEJARING SO-SIAL PERCAKAPAN TWITTER,” J. Ilm. Inform. Komput., vol. 24, no. 2, pp. 88–104, 2019, doi: 10.35760/ik.2019.v24i2.2365.

2. Y. Dwi and P. Ariyanti, “Analisis Centrality Aktor pada Penyebaran Informasi Kuliner di Media Sosial dengan menggunakan Social Network Analysis.” [Online]. Available: http://e-journal.ivet.ac.id/index.php/jsitee,2022.

3. D. Jurusan Ilmu Komunikasi, F. Dakwah dan Komunikasi, and U. Suska Riau, “MENCERMATI PILIHAN RAKYAT ANTARA POPULARITAS DALAM INTEGRITAS SEMU,” 2017, http://dx.doi.org/10.24014/jdr.v28i2.5544.

4. E. Krisnawati, D. Surono Wibowo, R. Wijayatun Pratiwi, A. Susanto, J. Teknik Informatika, and P. Harapan Bersama, “Penerapan Eigenvector Centrality Terkait Metode Social Network Analysis (SNA) dalam Program Vaksinasi Covid-19 di Twitter,” vol. 7, no. 3, 2022, [Online]. Available: http://id.dbpedia.org/

5. Eliani and Murdani, “Bulletin of Data Science Kombinasi Metode SWARA Dan MOORA Untuk Pendukung Keputusan Pemberian Insentif Karyawan,” Media Online, vol. 2, no. 1, pp. 17–25, 2022, [Online]. Available: https://ejurnal.seminar-id.com/index.php/bulletinds

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3