Author:
Gohil Him,Joshi Vandana,Gandhi Snehal
Abstract
Over the last few years, fake news has dramatically increased on social media. Fake news can originate from any number of sources and is shared across different social platforms. This type of information is used to spread for fun or economic gain. Our goal is to stop distributing this type of misleading information on social media or any other platform. In this paper, we have proposed a hybrid model (RoBERTa and BERT) to detect fake news. Our proposed architecture is based on the LIAR multi-label dataset. Our model shows promising results.
Publisher
Sarada Ranganathan Endowment for Library Science
Reference12 articles.
1. Devlin, J., Chang, M.-W., Lee, K., Google, K. T., & Language, A. I. BERT: Pre-training of deep bidirectional transformers for language understanding. https://github.com/tensorflow/ tensor2tensor
2. Goldani, M. H., Momtazi, S., & Safabakhsh, R. (2021). Detecting fake news with capsule neural networks. Applied Soft Computing, 101, 106991. https://doi.org/10.1016/j. asoc.2020.106991
3. Jadhav, S. S., & Thepade, S. D. (2019). Fake news identification and classification using DSSM and improved recurrent neural network classifier. Applied Artificial Intelligence, 1–11. https://doi.org/10.1080/08839514.2019.1661579
4. Li, Y., Jiang, B., Shu, K., & Liu, H. (2020). Toward a multilingual and multimodal data repository for COVID- 19 disinformation. International Conference on Big Data. https://doi.org/10.1109/bigdata50022.2020.9378472
5. Liu, J., Wang, C., Li, C., Li, N., Deng, J., & Pan, J. Z. (2021). DTN: Deep triple network for topic specific fake news detection. Journal of Web Semantics, 100646. https://doi. org/10.1016/j.websem.2021.100646