On setting boundary conditions for calculations of turbomachines in 3-d computer packages

Author:

Lazarev L. Ya.1,Fadeev V. A.1

Affiliation:

1. Federal State Budgetary Educational Institution of Higher Education Moscow Power Engineering Institute

Abstract

Unfortunately, in a growing number of publications of the results of the study of turbomachines in ANSYS and other packages, insufficient attention is paid to the choice of the flow model (absolute or relative) and the setting of boundary conditions in the areas adjacent to the rotating impeller: shroud seal, diaphragm (end) seals, gap over shroudless blades, steam balance holes, etc.As a rule, these areas contain such elements of geometry as a “ledge”, “projection”, “crest”, the flow around which, and, consequently, their resistance depends on the angle of incoming flow relative to the barrier. In the stages of turbomachines in sections behind fixed blade units, angle α1 between the flow velocity vector (in absolute motion) and the circumferential velocity is 10°÷25° (for steam turbine stages), 20°÷35° (for gas turbine stages) and 40°÷75° ((for axial compressor stages). It is shown (using the example of viscous flow around the “ledge + projection” system) that a change in the angle in the range of 15°÷90° changes the resistance by almost 2 times.The choice of a particular type of flow model (absolute or relative) for the domain primarily determines the value of the angle of interaction of the flow lines with an obstacle: it remains close to α1, or close to β1 = α1 + 20°÷70°, which significantly changes the qualitative picture of the viscous flow around the characteristic elements of geometry (“ledge”, “projection”, “crest”), and the values of integral parameters (flow rate, power, efficiency). The lack of recommendations on the correct choice of boundary conditions will inevitably lead not only to the inability to compare the results of various published studies, but also to their objective value. Therefore, the need to substantiate proposals for the choice of flow models in the areas of labyrinth seals, steam balance holes, gaps over shroudless blades, etc. is very relevant. 

Publisher

NPO Energobezopasnost

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3