Modification, Simulation and Demonstration of Laboratory Scale Pelton Turbine for Waterfall Hydropower Plant

Author:

Nasir Lawal Muhammed, ,Onche Emmanuel,Seriki Oluwatoyin Lanre, , ,

Abstract

To demonstrate the concepts of using waterfall hydropower to generate energy, a Mini-Laboratory Pelton Turbine (MLPT) was designed and simulated. The principle of energy conversion from potential energy of water at high elevation to kinetic energy at lower elevation through gravity fall was used. To achieve relative continuity of supply as in waterfall, a centrifugal pump was used to deliver water into a set of three reservoirs positioned at different heights. Water from the reservoirs through pipes of different diameters was used to drive the pelton Wheel turbine. A pipe matrix that allows combination of water from two or three sources at different heights and different pipe diameters was designed to demonstrate principle of conservation of flow at a junction. In the laboratory scale design, a power of 750 W was targeted. The required flow rates from different heights of reservoirs to deliver the power were used to establish nozzle diameters, rotor size, rotational speeds and power coupling ratios. A simulation of the model was conducted with different heights, pipe diameters and flow combinations using pipe matrix, were conducted using Matlab Simulink environment. The results showed that the velocity of flow under gravity increases with height of water and the force and torque associated with the flow rate increase with flow area and height of water. The sum of flows from matrix pipes was always found to be conserved with a variance of 0.27. For water heights of 7, 9 and 11 m, the nozzle diameter was found to be 19.0, 25.4, and 38.1 mm and the corresponding jet velocities were 11.2, 12.5, and 13.8 m/s. The flow rates for the scenarios were 0.0026, 0.0046 and 0.0103 m3/s. The optimum wheel diameter was 313 mm with a power coupling of 5.6:1. Compared to other models [27, 35] from the direct use of jets from pumps, the results have similar characteristics and geometric profiles. The average velocity is lower but, flow rate is higher due to the influence of larger cross sectional area. Thus, it is possible to produce the same power output using lower pressure heads when flow rate is optimized using nozzle diameter to compensate loss in velocity. Such systems can be used to harness most of the low head waterfall in Nigeria. However, the possibility of harnessing waterfalls to generate electricity for low energy demand such as recreation centers and farm settlements is faced with problem of hard-to-reach water source due to topographic complexities.

Publisher

Afe Babalola University Ado-Ekiti

Reference35 articles.

1. [1] Bilal, A.N. (2013). Design of Micro - Hydro - Electric Power Station. International Journal of Engineering and Advanced Technology, 2(5), 39 - 47.

2. [2] Bhuyan, M.H., Hossain, M.S. & Islam, M.A. (2021). Design of a Pelton Turbine using SOLIDWORKS for Ocean Wave Energy Harvesting in MATLAB Simulink. Journal of Electrical and Electronics Engineering (IOSR-JEEE), 16(2), 27-35.

3. [3] Momoh, Z., Anuga, J.A. & Obidi. (2018). Implications of Poor Electricity Supply on Nigeria's National Development. Journal of humanities and social Science letters, 6(2), 31- 40. DOI:10.18488/journal.73.2018.62.31.40

4. [4] Onakoya, A.B., Onyakoya, A.O., Jimi-salami, O.A. & Odedairo, B.O. (2013). Energy Consumption and Nigeria Economic Growth: An Empirical Analysis. European Scientific Journal, 9(4), 25 - 40.

5. [5] Osasun, E. (2021). "Small Water Big Power: Exploring the potential for Small Hydropower in Nigeria Part - 1". Business Day Nigeria, Lagos, Nigeria. https://businessday-ng.cdn.ampproject.org/v/s/businessday.ng/enegy/power

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3