Impact Assessment of Elevation Angles on Signal Propagation at VHF and UHF Frequencies for Improved Rural Telephony

Author:

Ukommi UbongORCID, ,Ubom EmmanuelORCID,

Abstract

Rural telephony is challenging in the remote part of Nigeria due to inadequate telecommunication infrastructure, exorbitant cost of communication systems and poor road network for extension of fiber network. These factors constitute poor or no cellular network services in many villages. Alternatively, using Television White Space (TVWS) technology to facilitate telephony services in the rural areas through Ultra High Frequency (UHF) and Very High Frequency (VHF) spectrum is cost effective. Thus, this research investigates impact of elevation angle on signal propagation at UHF/VHF frequencies. The experimental test scenarios took measurements of received signal quality performance at different elevation angles and transmit power levels to obtain more stable results for substantive inference. The experimental test scenario considered a communication link, operating at UHF frequency of 436 MHz. During the experiment, azimuth and propagation loss for the communication link were kept constant while the receiving antenna elevation angles were varied to assess the impact of elevation angles. The assessment examined results obtained during the experiment. Comparing the received signal quality performance at zero (00) elevation angle, it has been observed that the received signal quality improves when the transmit power allocation increases. Results further show that for a given transmit power level of 34dBm, at zero (00) elevation angle test configuration, received signal quality performance of 1.80 dB, 6.90 dB at 300 elevation angle and 10.9 dB at 600 elevation angle were obtained, compared to improved quality performance of 11.8 dB at 00 elevation angle, 19.90 dB at 300 elevation angle and 24.92 dB at 600 elevation angle when the transmit power level was increased to 46.98 dBm. It is deduced from the experimental results that elevation angle of receiving antenna has significant influence on the received signal quality performance. This insight is very useful in the design and network planning of rural telecommunication services using TVWS frequencies for improved rural broadband penetration.

Publisher

Afe Babalola University Ado-Ekiti

Reference18 articles.

1. [1] Osseeiran, A., Parkvall, S., Peterson, P., Zaidi, A., Magnusson, S. & Balachandran (2020). 5G Wireless Access: An Overview. White paper, Ericsson Research, Stockholm.

2. TV White Space and Its Applications in Future Wireless Networks and Communications: A Survey;Zhang;IET Communications Journals,2018

3. Cellular-Based-Station-Assisted Device-to-Device Communication in TV White Space;G.Ding;IEEE Journal on Selected Areas in Communications 34 (1),2016

4. A Standard for TV White Space Spectrum Sharing;Flores;IEEE Communications Magazine,2015

5. [5] Ofcom, (2015). Ïmplementing TV White Space. Retrieved from https://www.ofcom.org.uk

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3