Response Surface Methodology Optimization of wear rate Parameters in metallic alloys

Author:

Aliemeke Blessing Ngozi Goodluck, ,Charles Lucky,Omoregie Peace,Momodu Abdulrazak,Jerry Christopher,Akpan Emmanuel, , , , ,

Abstract

The optimization of wear rate parameters in metallic alloys using Response Surface Methodology (RSM) has been experimentally performed. The wear rate, a critical factor affecting the durability and performance of metallic components, served as the response parameter, while track diameter, sliding speed, and mass difference were considered as independent variables. The Central Composite Design (CCD) experimental method systematically explored the response surface and optimizes the wear rate. A mathematical model was developed, revealing a significant p-value of 0.043 in the ANOVA table, indicating the collective influence of the independent variables on wear rate at a significance level of 0.05. Furthermore, the model demonstrates a substantial explanatory power, with R-squared of 69.45% and adjusted R-squared of 51.95%. The p-value calculated to be 0.60 for the statistical Lack of fit indicated a satisfactory model. These findings highlight the effectiveness of RSM in optimizing the experimental input values and offer valuable insights for enhancing the durability and performance of metallic alloys in various industrial applications. The obtained result addresses the problem of uncertainty inherent in optimal levels of input parameters wear experimentation.

Publisher

Afe Babalola University Ado-Ekiti

Reference21 articles.

1. [1] Cheng, Y., Yang, H., Chen, Z., & Zhang, X. (2021). Optimization of Wear Rate Parameters in Metallic Alloys Using Response Surface Methodology. Matrerial Science and Engineering, 3(2). 821-826.

2. [2] Vengatesvaran, K., Prithiviraj, N. & Periyasamy N. (2018). Thermal Analysis and Material Optimization of Piston in I.C. Engine. International Journal for Applied Research in Engineering, 4(3), 153-171.

3. [3] Gupta, A., Sharma, R., Singh, P., & Mishra, S. (2023). Response Surface Methodology Optimization of wear rate parameters in metallic alloys Materials Today. 45(1), 241-246

4. [4] Adke,M. N., & Karanjkar, S. V. (2014). Optimization of Die-casting Process Parameters to Identify Optimized Level for Cycle Time Using Taguchi Method. International Journal of Innovation in Engineering and Technology, 4(4), 365-376.

5. [5] Li, S., Wang, J., Liu, Q., & Zhang, L. (2022). Response Surface Methodology Optimization of Wear Rate Parameters in Titanium Alloys for Aerospace Applications. Journal of Materials Technology, 3(1), 110-116

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3