Comparative analysis and optimization of thermodynamic behavior of combined gas-steam power plant using grey-taguchi and artificial neural network

Author:

MADAN Komal1ORCID,SINGH Omendra Kumar1ORCID

Affiliation:

1. Department of Mechanical and Automation Engineering, Indira Gandhi Delhi Technical University for Women, Delhi, 110006, India

Abstract

In the published studies, to the best of the authors’ understanding, the grey Taguchi-based statistical technique has not been applied for the optimization of combined gas-steam power plants. In view of this, seven essential input parameters namely compressor inlet air temperature, pressure ratio, fuel temperature, volumetric flow rate of fuel, gas turbine maximum temperature, compressor efficiency, and turbine efficiency are chosen with the aim of determining the optimal combination of design variables that maximize the net power generation, thermal efficiency, exergetic effciency, and minimize the specific fuel consumption. Also, the impact weight of each parameter on output indicators has been evaluated. While the Taguchi approach helps to create an orthogonal array of L27 (3^7), the ANOVA method determines the contribution of each input argument on the objective function. Unlike the Taguchi and ANOVA optimization methodology, the grey relational analysis is performed to transform the multi-objective function into a single objective by way of estimating its grey relational grade. The most favorable combination of input parameters is determined as A1B1C1D1E3F3G3 and under this state, the optimum values of power generation, thermal efficiency, exergetic efficiency, and specific fuel consumption are found to be 259911 kW, 64.9 %, 66.27 %, and 0.1839 kg/kWh respectively. Moreover, the contribution ratio on the output characteristic of the combined cycle is found to be maximum for turbine efficiency (42.41 %) and minimum for fuel temperature (0.59 %). The effectiveness of the grey-Taguchi method is acknowledged and validated using an artificial neural network technique in MATLAB.

Publisher

Journal of Thermal Engineering

Subject

Fluid Flow and Transfer Processes,Energy Engineering and Power Technology,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3