Design and development of air ventilated air bed for hospitalized patients

Author:

KARANJE Darshan1,PATIL Shivroop1ORCID,GURSAL Shivraj1ORCID,HATTE Prafulla1ORCID

Affiliation:

1. School of Mechanical Engineering, MIT Academy of Engineering, Alandi, Pune, 412105, India

Abstract

Proper ventilation is a critical consideration for the comfort of hospitalized patients. Dry skin, skin rashes, weariness, poor sleep, and other concerns caused by insufficient ventilation can all be avoided with proper ventilation. Air-Ventilated Air Beds are used to supply air to the major parts of the patient’s body. This air bed is constructed in such a way that air is circulated con-tinually throughout the body of the hospitalized patient. It is especially beneficial for people who are bedridden and need to spend a significant amount of time in bed due to illness. Exces-sive heat generated between the bed and the patient is perhaps the common cause of bedsores. Sweating is the leading cause of bedsores. Air ventilation is included in the system to prevent sweating and reduce the incidences of bedsores. Dual compressors, rubber tubes, flow control valves, and anti-decubitus mattresses are among the components used. The rubber tubes are used to ventilate the space between the body of the patient and the upper surface of the air bed. Above the mattress, the rubber tube mesh is positioned. The air is first compressed in two compressors before passing through the distribution manifold and through the meshing. The tubes are altered by drilling holes at certain intervals. The air from the compressor is circulated through the pipes before passing through the openings in the pipes. The unrestricted passage of compressed air via a capillary tube lowers the temperature of the air. The air exhausted through the capillary tubes maintains the patient’s body temperature stable for a while before lowering it. The air is ventilated throughout the bed in this manner. Bedsore can be avoided by reduction of sweat by using the air in close contact with the patient.

Publisher

Journal of Thermal Engineering

Subject

Fluid Flow and Transfer Processes,Energy Engineering and Power Technology,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3