Experimental performance evaluation of water source heat pumps in different circumstances and comparison to air source heat pumps

Author:

SALEH Ahmad1ORCID

Affiliation:

1. Department of Mechanical Engineering, Zarqa University, Zarqa 13132, Jordan

Abstract

This study aims to present a novel experimental method for studying the performance of wa-ter source heat pumps which have not received sufficient attention, although this is particu-larly important for hot regions with great potential of hot water sources. The experimental model has special characteristics as it allows to investigate the performance of heat pumps under different operating conditions and allows a comparison between different types of heat pumps without the need to install a ground heat exchanger. The ground heat exchanger is known to be the most expensive part of any experimental model. In addition to that, it only allows to study the performance under specific conditions. The ground heat exchanger was replaced by a secondary heat pump that allows to provide an environment that simulates the different operating conditions of different types of heat pumps. It was found that water source heat pumps are more efficient than air source heat pumps with efficiency that increases with increasing water source temperature. It was found that increasing the water source tempera-ture from 5 to 20 oC, improved the rate of heat extracted from the water source by 11.3% and the coefficient of performance by 2.8% for each degree. Another important feature of water source heat pumps is the stability of the energy flow rates, which is a guarantee of higher sea-sonal performance coefficients. It can be concluded that hot regions with high potential of hot water sources has valuable opportunities to invest in the field of water source heat pumps with the consequent significant energy savings.

Publisher

Journal of Thermal Engineering

Subject

Fluid Flow and Transfer Processes,Energy Engineering and Power Technology,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and analysis of thermoacoustic air source heat pump water heaters;International Journal of Air-Conditioning and Refrigeration;2024-08-02

2. Estimation of the Seasonal Coefficient of Performance of Air-to-Water Heat Pumps in Temperate Climate;2024 9th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE);2024-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3