Experimental analysis of heat transfer characteristics using ultrasonic acoustic waves

Author:

HAMADOUCHE Ali Bousri1ORCID,RICHARD Nebbali2ORCID

Affiliation:

1. Laboratory of Multiphase Transport and Porous Media (LTPMP), Faculty of Mechanical and Process Engineering (FGMGP),University of Sciences and Technology Houari Boumediene (USTHB), B.P 32, El Alia, Bab Ezzouar, 16111, Algeria

2. Laboratory of Multiphase Transport and Porous Media (LTPMP), Faculty of Mechanical and Process Engineering (FGMGP), University of Sciences and Technology Houari Boumediene (USTHB), B.P 32, El Alia, Bab Ezzouar, 16111, Algeria

Abstract

In this experimental work, heat transfer intensification using ultrasonic waves was investigated. A heat source, consisting in a parallelepiped aluminum block in which two electrical heating cartridges of 160 W each were mounted to heat four liters of distilled water contained in a tank made of Plexiglas. To demonstrate the effectiveness of heat transfer enhancement with the use of ultrasounds, three different configurations were analyzed. In the first one, considered as a reference case, the heat transfer was studied without ultrasound field. In the second configuration, ultrasonic acoustic waves were generated using one transducer vibrating at a fixed frequency of 40 kHz with a total power of 60 W. In the last configuration, ultrasounds were generated with two similar transducers mounted on two opposite walls of the water tank while maintaining the same power and frequency. The effect of the distance separating the heat source to the trans-ducers on the convective heat transfer coefficients and the average temperature of the water in the tank were analyzed in detail. The results revealed that the natural convection heat transfer in the water tank was intensified by means of low frequency acoustic waves. Indeed, it was shown, particularly, that more the distance between the transducer and the heater is low more the heat transfer improvement is better. The heat transfer enhancement factor was estimated to 2.5 on the surface facing the transducer while it was only about 1.2 on the opposite surface in C2 configura-tion. In C3 configuration, the heat transfer enhancement factor is nearly the same with, however, more homogenous water temperature. The acoustic cavitation and streaming were identified as the main phenomena leading to these results. This study successfully demonstrated the feasibility of heat transfer intensification using low frequency ultrasonic waves.

Publisher

Journal of Thermal Engineering

Subject

Fluid Flow and Transfer Processes,Energy Engineering and Power Technology,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3