An experimental study on resuspension, thermostability and migration phenomenon of nanoparticles in pool boiling

Author:

BHARATHWAJ R.praveen1,VARUN PRADEEP M. B.1,PADMANATHAN P.1,SATHEESH A.1,DEVI N. R.2

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology Vellore, Tamilnadu, India

2. Department of Physics, Auxilium College (Autonomous), Vellore, Tamilnadu, India

Abstract

Nanoparticles have proven to be effective in sensible and latent heat exchanges alike. Applications of nanoparticles in phase change processes are associated with migration and resuspension of nanoparticles upon which our existing knowledge is very limited. This work experimentally investigates the migration ratio, stability and resuspension of nanoparticles during phase change. Knowledge on migration ratio is essential to gauge the thermal and lubricative enhancements in the subsequent processes. Al2O3/Water & CuO/Water nanofluids were prepared in four mass fractions (0.05, 0.1, 0.2, 0.4) using ultrasonic agitation technique. Nanofluids with mass fraction higher than 0.5% displayed poor stability over time also, agglomeration and sedimentation were pronounced and inevitable. Nanofluid destabilises and agglomerates rapidly at temperatures closer to saturation temperature. Resuspension of agglomerated chunks were observed during nucleate boiling where the test fluid became extremely nonhomogeneous. Migration ratio was found to commensurate with volume fraction where CuO/water nanofluid exhibited 23% lesser migration ratio than Al2O3/water nanofluid. Maximum migration ratio of 17.8% was observed for Al2O3/water with 0.05 wt%. Maximum migration was found when the molecular dimensions of nanoparticles and the base fluid are of similar magnitudes. It is inadvisable to involve nanoparticles in phase change systems.

Publisher

Journal of Thermal Engineering

Subject

Fluid Flow and Transfer Processes,Energy Engineering and Power Technology,Building and Construction

Reference1 articles.

1. The article references can be accessed from the .pdf file.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3