Numerical investigation of an amalgamation of two phase change materials thermal energy storage system

Author:

Gharde Pankaj R.1ORCID,Havaldar Sanjay N.1ORCID

Affiliation:

1. Vishwanath Karad MIT World Peace University, Pune, 411038, India

Abstract

In the last three decades, many researchers have published their findings on the storage of thermal energy using various phase transition materials (both organic and non-organic). One of their goals was to have a higher heat storage capacity with a shorter heat charging cycle for thermal energy storage. This study looked into a floating capsule thermal energy storage system (TESS). A number of spherical capsules filled with beeswax were placed in a paraffin-filled cylindrical shell. With heat transfer fluid flowing through three hexagonal tubes arranged at 120° inside the TESS core, the two phase change materials (beeswax with a thermal conductivity of 0.25 W/mK and paraffin with a thermal conductivity of 0.23 W/mK) were charged and discharged. For the proposed TESS, a mathematical model was created and utilised to forecast thermal energy storage capacity and charging/discharge times for various configurations. In TESS, a 70–30% mixture of the two PCMs results in a 21.5 percent increase in heat storage capacity when beeswax alone is used, and an 8.4 percent decrease in storage capacity when paraffin alone is used. For a heat storage capacity of 7300 kJ, the model estimates charging and discharging times of around 2.6 and 3.2 hours, respectively.

Publisher

Kare Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3