Fossil energy reduction for heating and cooling of buildings using shallow geothermal integrated energy systems – a comprehensive review

Author:

KUMAR Balaji1ORCID

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology (VIT) University, Vellore, Tamil Nadu, 632014, India; Department of Architecture and Planning, Indian Institute of Technology Roorkee (IITR), Roorkee, Uttarakhand, 247667, India

Abstract

Ground source heat pumps (GSHP) are a very efficient system for space heating and cooling, and it was established in 1904. GSHPs can minimize the environmental effect of buildings by using the ground as a renewable energy source. The ground will act as a heat sink or heat source. The research collection aims at finding the various possible opportunities for the effec-tive integration of shallow geothermal energy (SGE) to decrease the fossil energy in the built environment and to reduce emission associated with it. The direct utilization of SGE using a ground source heat pump (GSHP) has been reviewed in detail for global north and global south countries, with a primary focus on heating application. The punctual information of results of various authors have been extensively summarized. This review discusses the GSHP installation status, SGE availability, GSHP system simulation, feasibilities, and performance. Worldwide more than one million GSHP systems have been installed, and the system is prev-alent in Europe, the Americas, and Asia. Most of the systems are installed for heating-domi-nated buildings in the global north. This paper also contains the research details pertaining to the last two decades about refrigerants and compressors for the development of GSHP. Finally, the feasibility study and the performance of the GSHP unit for different climatic conditions are reviewed and it is found that the technique is more feasible for cold and dry climatic con-ditions. This paper highlights the recent research findings and a potential gap in the above components for further research and development.

Publisher

Journal of Thermal Engineering

Subject

Fluid Flow and Transfer Processes,Energy Engineering and Power Technology,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3