The optimal geometric design of a v-corrugated absorber solar air heater integrated with twisted tape insert

Author:

ALİ ALJUBURY Issam1ORCID,KHALIL HUSSAIN Mohammed2ORCID,FARHAN Ammar2ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Baghdad, Iraq

2. Department of Energy Engineering, University of Baghdad, Iraq

Abstract

The proper design of a solar air heater depends on the highest thermal performance of the solar collector. In the present paper, proposed a method to find an optimal dimension of V-corrugated absorber solar air heater (VSAH) combined with a twisted tape insert (TTI). The design variables of the VSAH-TTI are length, width, number of channels, and twisted tape ratio. The effect of each design variable is examined and studied under various ranges of Reynolds number (Re). Given the complexity in changing design variables of solar collector having a V-corrugated absorbing plate with twisted tape insert (VSAH -TTI) to find the highest thermal performances, the multi-objective function genetic algorithm is used to find the optimal dimensions of VSAH-TTI based on maximizing the heat gain, thermal and effective efficiency as well as minimizing the pressure drop on solar collector. The range of each design variable of the VSAH-TTI by means of length (1 – 2.5 m), width (0.5 – 1.5 m), number of channels (4 – 14), and twisted tape ratio (1 – 8) are specified in paper based on the most common practical values of the solar collector. The results showed for the case under study that each design variable of VSAH-TTI affect the thermal performance and the optimized geometry by using a genetic algorithm (Ga) can find the optimal geometric dimensions of VSAH-TTI. The optimal dimension by using Ga can increase the heat gain by more than 8% and increase the effective and thermal efficiency of more than 7% for the original geometry. Furthermore, the optimized geometry can reduce more than 29% for the original geometry. These improvements in optimized geometry for VSAH- TTI without introducing any additional items.

Publisher

Journal of Thermal Engineering

Subject

Fluid Flow and Transfer Processes,Energy Engineering and Power Technology,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3