Enhancement in thermal and electrical characteristics of solar photovoltaic module through a direct contact water jacketed cooling system

Author:

Sharma Deepak Kumar1ORCID,Rathod Manish K.1ORCID,Bhale Purnanand V.1ORCID

Affiliation:

1. Renewable and Sustainable Energy Lab, Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395 007, India

Abstract

Renewable energy resources are vital for addressing the universal concerns of air quality, energy security, and sustainable development. Solar energy has several benefits over other popular renewable energy sources, such as its accessibility and increased predictability. The device used for conversion of solar energy to electrical energy is known as photovoltaic panel, which is highly sensitive to the temperature. A significant reduction in efficiency is observed with an increment in temperature hence cooling of photovoltaic panel is highly desirable. Among the different cooling techniques, water cooling is attractive and widely used due to its good thermal properties and availability. Generally, panel cooling through water circulation in tubing is explored in past, however, these tubing structures are having some limitations such as heat transfer barrier, limited surface area, leakage issues, clogging and cost of material. These issues can be partially resolved by using direct contact water jacket cooling system. Therefore, the present study focuses on in enhancing the thermal and electrical characteristics of the solar photovoltaic module through a direct contact water jacketed cooling system. Initially, a 3D numerical model is developed and the outcome of the numerical model is compared with the experimental work. The results obtained are found in good agreement for solar cell temperature and water outlet temperature. The solar panel performance is investigated with different flow rates such as 0.01, 0.05, 0.1 and 1 cm/s. The direct contact water jacketed cooling system offers simplicity, light weight and cost effectiveness and is found promising over the indirect system. Temperature reduction up to 20 °C is observed over uncooled PV panel whereas enhancement in electrical efficiency up to 9.6 % is observed. The cooled PV solar cell maintain 40.2% low temperature compare to uncooled solar cell temperature.

Publisher

Kare Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3