Parametric analysis of solar-assisted trigeneration system based on energy and exergy analyses

Author:

AKRAM Wasim1ORCID,PARVEZ Mohd2ORCID,KHAN Osama3ORCID

Affiliation:

1. Department of Mechanical Engineering, Mewat Engineering College, Palla, District Nuh, Mewat, Haryana, 122107, India

2. Department of Mechanical Engineering, Al-Falah University, Faridabad, Haryana, 121004, India

3. Department of Mechanical Engineering, Jamia Millia Islamia University, New Delhi, 110025, India

Abstract

Rapid deterioration of environment has led researchers to explore feasible forms of energy which could produce multiple energy forms with minimum inputs. Hence, in this study a nov-el trigeneration setup is explored so as to achieve simultaneous forms of energy in the form of electrical energy, heating and cooling, driving its primary energy requirements through a solar power tower. Molten salt is used in this study to transfer the heat from the solar component to the vapor absorption apparatus. Further the vapor absorption system is tested for thermody-namic performance for a couple of refrigerants (LiNO3-H2O and LiBr-H2O), so as to establish the Pareto-optimal fluid among them. In order to remove any adherent error in the measuring procedure, all equipment’s uncertainty analysis was performed which was negligibly small approximately at 5.34 % in terms of power plant efficiencies. An exact analysis was performed so as to estimate energy and exergy in efficiencies in the equipment while varying input pa-rameters. Zenith exergy destruction was achieved in 33.6% by the central receiver, followed by 24.9% by heliostat, and 7.8% in heat recovery steam generator. The highest energy and exergy efficiencies (62.6% and 20.6%) are attained on system working on LiBr-H2O, whereas (60.9% and 19.6%) were obtained in LiNO3-H2O operated system.

Publisher

Journal of Thermal Engineering

Subject

Fluid Flow and Transfer Processes,Energy Engineering and Power Technology,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3