The evaluation of the performance of the heat exchanger of a triple concentric tube configuration with ionic liquid (imidazolium) and MWCNT ionanofluid

Author:

HASAN Huda Majid1ORCID,ABDULMAJEED Basma Abbas2ORCID

Affiliation:

1. Department of Chemistry, College of Science, University of Thi-Qar, Thi-Qar, 64011, Iraq

2. Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad,10071, Iraq

Abstract

In this study, a triple concentric tube heat exchanger (TCTHE) was designed. It had three copper concentric tubes. Their thicknesses were 0.762 mm, 1.143 mm, and 1.27 mm. The diameters were 9.525 mm, 22.25 mm, and 34.925 mm, respectively. The tube’s length was 670 mm. The cooling medium used was the ionic-liquid (IL) 1-Ethyl-3-methylimidazoliumtetra-flouraborate [EMIM][BF4] and the ionanofluid (INF) prepared of 0.5% Multi walled carbon nanotubes (MWCNT) in [EMIM][BF4], while oil forty stock was the hot fluid, to investigate TCTHE performance. The volumetric flow rate (VFR) of the cooling medium was 20-55 l/hr, with a 25-27 °C temperature (temp). VFR of the hot fluid was constant and equal 20 l/hr. The inlet oil temp was 50, 60, and 70 oC, respectively. The type of flow was countercurrent. The heat transfer was investigated by calculating different parameters for the cooling medium. There was an improvement in the Nusselt number (NU) of INF of 5% compared to the IL. A 75% increase in the friction factor of INF was found compared to that of IL. A 95% increase in the pressure drop was calculated in the inner tube using INF compared with that of IL. The overall heat transfer coefficient (U) was enhanced by 3% using INF in comparison with IL. Fi-nally, U showed some improvement, resulting in increased heat transfer. In conclusion, using the prepared INF lead to improve the heat transfer in the TCTHE.

Publisher

Journal of Thermal Engineering

Subject

Fluid Flow and Transfer Processes,Energy Engineering and Power Technology,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3