Risk Assessment Using Predictive Analytics

Author:

Alotaibi Eid MohammedORCID

Abstract

Purpose: This research paper uses design science methodology to develop and evaluate a predictive analytics model for audit risk assessment. This research therefore contributes to improving the accuracy and efficiency of audit risk assessment through predictive analytics.   Theoretical framework: This study involved developing and evaluating a predictive analytics model for audit risk assessment, with it being tested during the audit of a publicly listed Saudi company.   Design/methodology/approach: This study adopted the design science research methodology, which is a problem-solving approach that involves the creation of innovative solutions to practical problems. This methodology is particularly relevant for developing and evaluating predictive analytics models for audit risk assessment, because it provides a structured, systematic approach to the problem-solving process. In the context of this research paper, the design science research methodology was used to develop and evaluate a predictive analytics model for audit risk assessment.   Findings: The proposed predictive analytics model for audit risk assessment was found to be an effective tool for helping auditors to make informed decisions based on data analysis. The model accurately identifies high-risk factors associated with an organization, provides valuable insights for decision-making, and highlights areas of potential risk that may require further investigation.   Research, practical & social implications: Future research could explore several areas related to predictive analytics in audit risk assessment. One important area to investigate would be the impact of using predictive analytics on audit quality. The ethical implications of using predictive analytics in audit risk assessment and the potential biases that could affect a model’s accuracy are also important areas to explore.   Originality/value: This paper helps improve our understanding of how predictive analytics can be effectively applied to audit risk assessment and how design science methodology can be used to develop and evaluate predictive analytics models. Furthermore, this study provides insights about the effectiveness of predictive analytics for improving audit risk assessment, thus contributing to the existing literature on the topic.

Publisher

Conselho Nacional de Pesquisa e Pos-Graduacao em Direito - CONPEDI

Subject

Decision Sciences (miscellaneous),Strategy and Management,Tourism, Leisure and Hospitality Management,Business, Management and Accounting (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3