Genealogical diagnostics of neoplasms based on artificial intelligence systems

Author:

Kuzniatsou A. E.1ORCID

Affiliation:

1. Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus

Abstract

The compilation and analysis of the patient’s genealogies is one of the methods of population genetics, which makes it possible to identify a predisposition to a particular oncological pathology. At present, it is relevant to prove the feasibility of developing and introducing into clinical practice a comprehensive method for diagnosing and preventing tumors based on data from genetic counseling, molecular biological research and modern artificial intelligence technologies. An information-analytical system is proposed that allows analyzing the patient’s data obtained during the consultation, with the possibility of supplementing them with information from the medical history and the results of the study. The proposed information system is able to analyze of the genealogy and give a preliminary conclusion about the risk of a tumor process in the patient’s family members, according to the algorithms of the morbidity accumulated in the region.

Publisher

Publishing House Belorusskaya Nauka

Subject

General Medicine

Reference15 articles.

1. Order of the Ministry of Health of the Republic of Belarus “On Approval of the Concept for the Development of Electronic Health in the Republic of Belarus”. March 20, 2018, no. 244 (in Russian).

2. Cherstvoi E. D., Kravtsova G. I., Furmanchuk A. V., Gerasimovich A. I., Grigor’ev D. G., Demidchik Yu. E., Dubrovskii A. Ch., Kletskii S. K., Letkovskaya T. A., Nerovnya A. M., Sachivko N. V. Tumors and tumor-like processes in children. Minsk, Asar Publ., 2002. 399 p. (in Russian).

3. Siegel R. L., Miller K. D., Jemal A. Cancer statistics, 2020. CA: a Cancer Journal for Clinicians, 2020, vol. 70, no. 1, rr. 7–30. https://doi.org/10.3322/caac.21590

4. World Health Organization (WHO). Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019. WHO; 2020. Available at: who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed 11.04.2022).

5. Sung H., Ferlay J., Siegel R. L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. American Cancer Society. CA: a Cancer Journal for Clinicians, 2021, vol. 71, no. 3, rr. 209–249. https://doi.org/10.3322/caac.21660

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3