Study of the kinetics of aviation oils thermal conversion under non-isothermal conditions

Author:

Vasilevich S. V.1,Shaporova E. A.1,Stoyko S. О.1

Affiliation:

1. Belarusian State Aviation Academy

Abstract

The paper discusses the results of a kinetic study of the thermal decomposition of MS-8P, TN-98, and TN-600 aviation oils under conditions of continuous heating at a constant rate of 5 K/min to a temperature of 1 073 K. An integral method was used to describe the reaction mechanism and determine the macrokinetic parameters. It has been established that, from a phenomenological point of view, the average reaction of aviation oils conversion under the experimental conditions corresponds to the reaction model described by the surface-limited reaction equation (MS-8P), the power law (TN-98) and the model described by the three-dimensional diffusion-limited reaction equation (TN-600). When dividing the averaged reaction into two reactions (the first is completed at a temperature of 550–600 K, the second at a temperature of 638–655 K), it is determined that the first reaction is described by the reaction equation of the 2nd order (MS-8P), the first order (TN-98) and the reaction equation of one-dimensional diffusion (TN-600), and the second the reaction equation of the first order (three types of oil). The activation energy of the first reaction was 99 kJ/mol (MS-8P), 145.6 kJ/mol (TN-98) and 57.4 kJ/mol (TN-600), the value of the pre-exponential factor was – 144 241 567 min–1 (MS-8P), 62 161 395 942 min–1 (TN-98) and 236.16 min–1 (TN600). The activation energy of the second reaction is 160 kJ/mol (MS-8P), 91.6 kJ/mol (TN-98) and 127.1 kJ/mol (TN-600), the pre-exponential factor is 8.81 ‧ 1011 min–1 (MS-8P), 1.26 ‧ 104 min–1 (TN-98) and 2.04 ‧ 108 min–1 (TN-600). It is shown that the use of these values of the activation energy and the pre-exponential factor leads to agreement between the calculated values of the degree of decomposition of the studied oil samples and the experimental ones in the range of values of the degree of decomposition from 0 to 1.

Publisher

Publishing House Belorusskaya Nauka

Subject

Inorganic Chemistry,Organic Chemistry,Chemistry (miscellaneous),Analytical Chemistry

Reference19 articles.

1. Svishchev G. P. (ed.). Aviation: Encyclopedia. Moscow, Great Russian Encyclopedia, 1994. 735 p. (in Russian).

2. Konyaev E. A., Nemchikov M. L. Himmototology of aviation oils and hydraulic fluids. Moscow, Moscow State Technical University of Civil Aviation, 2008. 81 p. (in Russian).

3. Novikov D. K., Fakleev S. V. Supports and seals for aircraft engines and power plants. Samara, Publishing house of Samara State Aerospace University, 2011. 124 p. (in Russian).

4. Danilov V. F., Litvinenko A. N., Akhsanov M. M., Timerbaev R. M. (compilers). Oils, lubricants and special liquids. Elabuga, Publishing House of the Branch of K(P)FU, 2013. 216 p. (in Russian).

5. Kissinger H. E. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1957, vol. 29, no. 11, pp. 1702–1706. https://doi.org/10.1021/ac60131a045

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3