Author:
Klimovich Iryna M.,Komarov Fadei F.,Zaikov Valery A.
Abstract
Ti–Al–C–N coatings were produced by reactive magnetron deposition at different substrate temperatures Ts (220, 340 and 440 °C) and bias voltages Ubias (–90, –150 and –200 V). Using the energy dispersive X-ray spectroscopy method, it was found that the increase of the bias voltage led to a growth of argon atomic concentration and the (Al + Ti) / (Ti + N) ratio and to a decrease of the trace oxygen concentration in Ti–Al–C–N coatings. The growth of Ts promoted a decrease in the oxygen concentration. By means of scanning electron microscopy, a change in the type of the microstructure (columnar, granular and mixed columnar-granular) of coatings by varying Ts and Ubias was found. Electrophysical measurements showed the change of the film resistivity (1982–3169 μΩ · cm) when the deposition conditions were varied. The solar absorptance αs was varied from 0.24 to 0.54, the emittance ε was varied from 0.33 to 0.52, and the αs / ε ratio was varied from 0.60 to 1.44 by changing Ts and Ubias. The obtained results indicate the opportunity to vary the Ti–Al–C–N films electrophysical and optical characteristics by choosing optimal substrate heating temperature and bias voltage.
Publisher
Publishing House Belorusskaya Nauka
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献