Method of spatial cross-coupling elimination of control system channels for object guidance using two TDoA measurements

Author:

Legkostup V. V.1

Affiliation:

1. JSC “ALEVKURP”

Abstract

The problem of object guidance to the target point using two time difference of arrival (TDoA) measurements obtained from three navigation positions is considered. A general equation that describes a kinematic trajectory of the object along the line of intersection of two object position hyperboloids corresponding to the two TDoA measurements is obtained. It has been found out that the kinematic trajectory of the object lies in a plane perpendicular to the plane of three navigation positions. This kinematic trajectory can be described by the conic equation in the general case, and in the range of position parameters used in practice this equation yields a hyperbola. A method of elimination of object spatial cross-coupled link between control system channels, consisting in a special projection of accelerations of the object during their transformation from the measuring coordinate system to the wind coordinate system is described. This made it possible to implement object control in TDoA navigation system with three navigation positions only using two identical expressions of the kinematic link obtained for a planar case without full spatial equation for kinematic link of the object’s motion and TDoA information. A computer simulation of the object guidance to a target point in space using two TDoA measurements was performed to check the accordance of the acceleration design expressions, which produced a positive results of viewed method. The approach described in the article makes it possible to implement object guidance using TDoA navigation system if available only three of four required navigation positions.

Publisher

Publishing House Belorusskaya Nauka

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3