Mathematical modeling of the creation process and aging of polymer composite materials

Author:

Laptev A. B.1ORCID,Kogan A. M.1ORCID,Nikolaev E. V.1ORCID,Rogachev A. A.2ORCID,Ihnatovich Zh. V.2ORCID,Matveenko Yu. V.2

Affiliation:

1. National Research Center “Kurchatov Institute” – Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials”

2. Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus

Abstract

Based on the analysis of the literature on the possibility of using neural networks to create new materials with high functional properties, the article considers a solution to the problem of determining the operational stability of polymeric composite materials by creating physical and chemically sound mathematical prediction models. Epoxy resins of the UP-637 and EA brands with an isophorone diamine hardener were chosen as the matrix of the model composite material, and oligobutadiene rubber of the SKN-10 KTR brand was chosen as the modifier. It justifies directions of work necessary for development of new materials creation methodology with optimal characteristics, building a model for changing the properties of materials at variation of composition and implementation of full-scale mathematical modeling of physical and chemical processes of polymer composite materials aging at changing level and time of climatic factors influence. Verification of the obtained dependence of service characteristics on the composition of the material and the level of influencing climatic factors was carried out on the basis of data from full-scale tests in a temperate climate. The proposed methodology for modelling the properties of polymer composite materials will reduce the development time of new materials and allow creation of polymer composites based on epoxy resin containing fillers of various natures (carbon, mineral and polymer) with high performance parameters.

Publisher

Publishing House Belorusskaya Nauka

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3