Improving the accuracy of short-term numerical weather forecasts for the territory of Belarus using the mesoscale WRF model and earth remote sensing data

Author:

Lysenko S. A.1,Zaiko P. O.1

Affiliation:

1. Institute for Nature Management of the National Academy of Sciences of Belarus

Abstract

The problem of improving the WRF numerical weather model performance for the territory of Belarus by assimilating the Earth remote sensing data is considered. It is shown that for the winter period, the use of satellite data of high spatial resolution, including on the structure of land use , albedo, leaf index and photosynthetically active radiation absorbed by the underlying surface can reduce a root-mean-square error of the short-term forecast (up to 48 h) of the air surface temperature by 0.53–1.11 °С. For the summer period, on the basis of numerical experiments the optimal correction factor for the land surface albedo was estimated. This made it possible to reduce a root-mean-square error of temperature forecast at the meteorological stations of Belarus for the lead time of +12, +24, +36, and +48 h by an average of 0.30 °С, 0.10 °С, 0.15 °С, and 0.16 °С, respectively.

Publisher

Publishing House Belorusskaya Nauka

Subject

General Medicine

Reference10 articles.

1. Hagelin S., Azad R., Lindskog M., Schyberg H., Körnich H. Evaluating the use of Aeolus satellite observations in the regional numerical weather prediction (NWP) model Harmonie–Arome. Atmospheric Measurement Techniques, 2021, vol. 14, no. 9, pp. 5925–5938. https://doi.org/10.5194/amt-14-5925-2021

2. Lagasio М., Pulvirenti L., Parodi A., Boni G., Pierdicca N., Venuti G., Realini E., Tagliaferro G., Barindelli S., Rommen B. Effect of the ingestion in the WRF model of different Sentinel-derived and GNSS-derived products: analysis of the forecasts of a high impact weather event. European Journal of Remote Sensing, 2019, vol. 52, no. 4, pp. 16–33. https://doi.org/10.1080/22797254.2019.1642799

3. Yan D., Liu T., Dong W., Liao X., Luo S., Wu K., Zhu X., Zheng Zh., Wen X. Integrating remote sensing data with WRF model for improved 2-m temperature and humidity simulations in China. Dynamics of Atmospheres and Oceans, 2020, vol. 89, art. 101127. https://doi.org/10.1016/j.dynatmoce.2019.101127

4. Ran L., Gilliam R., Binkowski F. S., Xiu A., Pleim J., Band L. Sensitivity of the Weather Research and Forecast/Community Multiscale Air Quality modeling system to MODIS LAI, FPAR, and albedo. Journal of Geophysical Research: Atmospheres, 2015, vol. 120, no. 16, pp. 8491–8511. https://doi.org/10.1002/2015jd023424

5. Li H., Zhang H., Mamtimin A., Fan S., Ju C. A New Land-Use Dataset for the Weather Research and Forecasting (WRF) Model. Atmosphere, 2020, vol. 11, no. 4, pp. 350. https://doi.org/10.3390/atmos11040350

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3