Affiliation:
1. A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus
Abstract
Several efficient computational schemes, providing the attainment of minimum errors in determining the main parameters of a boundary layer, are presented. The new trinomial polynomial obtained for definition of the velocity profile in the boundary layer much exceeds in accuracy all the known analogous solutions. A scheme of finding a fairly exact solution in the form of the half-sum of the classical Pohlhausen polynomials of the third and fourth degrees is proposed. This solution possesses better approximation properties compared to those of the initial profiles. A high-accuracy solution has been obtained for the velocity profile in the form the velocity profile curve being almost coincident with the exact solution. The friction stress error is . This solution yields an almost exact value of friction stress with very small calculation errors of the displacement thickness (0.12 %) and the form parameter (0.12 %).
Publisher
Publishing House Belorusskaya Nauka
Reference15 articles.
1. Prandtl L. Über flüssigkeits bewegungen bei sehr kleiner reibung. III Internationalen Mathematiker Kongresses, Heidelberg, 8-13 August 1904. Leipzig, 1904, pp. 484–491 (in German).
2. Stewartson K. The Theory of Laminar Boundary Layers in Incompressible Fluids. Oxford University Press, 1964. 191 p.
3. Blasius H. Grenzschichten in flüssigkeiten mit kleiner reibung. Journal of Applied Mathematics and Mechanics, 1908, vol. 56, pp. 1–37 (in German).
4. Karman T. V. Über laminare und turbulente Reibung. Journal of Applied Mathematics and Mechanics, 1921, vol. 1, no. 4, pp. 233–252 (in German). https://doi.org/10.1002/zamm.19210010401
5. Pohlhausen K. Zur näherungsweisen integration der differentialgleichung der laminaren grenzschicht. Journal of Applied Mathematics and Mechanics, 1921, vol. 1, no. 4, pp. 252–290 (in German). https://doi.org/10.1002/zamm.19210010402