Motion stability of the system of two bodies and their mass center in an inhomogeneous medium

Author:

Ryabushko A. P.1,Zhur T. A.2

Affiliation:

1. Belarusian National Technical University

2. Belarusian State Agrarian Technical University

Abstract

Within the framework of Newtonian celestial mechanics, a material system is considered. It consists of two spherically symmetrical bodies of comparable masses moving inside a gas dust ball with a spherically symmetrical density distribution of the medium in it. Problems are formulated and solved. They give an answer to the degree of influence of the gravitational field of an inhomogeneous medium on the motion stability of bodies and their mass center relative to the coordinates of the bodies, the coordinates of their mass center, as well as on the orbital stability according to Lyapunov. Additionally, the problems of the motion stability of bodies in the sense of Lagrange and Poisson are considered. It is proved that the gravitational field of a spherically symmetrically distributed medium transforms the considered motions, which are stable in vacuum, into unstable ones in the sense of Lagrange, Poisson, Lyapunov. Some numerical estimates related to instabilities are presented. They show that for popular pairs of stars and pairs of galaxies in an inhomogeneous medium, their additional displacements of the order of many millions of kilometers arise. When dark matter is taken into account, the displacements should not be an order of magnitude greater than the last estimate. The noted instabilities are a consequence of a secular displacement along the cycloid or deformed cycloid of the mass center of the system of two bodies and the absence of a barycentric coordinate system when taking into account the influence of the gravitational field of a spherically symmetrically distributed medium on the motion of bodies (the considered material system is not closed). It is proved that for this system, circular and elliptical orbits of bodies cannot exist. Instead of these orbits, we have “turns” shown in the figure given in the article. In planetary systems (such as the Solar System) immersed into an inhomogeneous medium, the displacements of the mass centers are negligible and therefore we can assume that circular and elliptical orbits can practically exist. 

Publisher

Publishing House Belorusskaya Nauka

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3