Difference schemes for quasi-linear parabolic equations with mixed derivatives

Author:

Matus P. P.1,Hieu Le Minh2,Pylak D.3

Affiliation:

1. Institute of Mathematics of the National Academy of Sciences of Belarus; Institute of Mathematics and Computer Science The John Paul II Catholic University of Lublin

2. University of Economics, University of Danang

3. Institute of Mathematics and Computer Science The John Paul II Catholic University of Lublin

Abstract

The present paper is devoted to constructing second-order monotone difference schemes for two-dimensional quasi-linear parabolic equation with mixed derivatives. Two-sided estimates of the solution of specific difference schemes for the original problem are obtained, which are fully consistent with similar estimates of the solution of the differential problem, and the a priori estimate in the uniform norm of C is proved. The estimates obtained are used to prove the convergence of difference schemes in the grid norm of L2.

Publisher

Publishing House Belorusskaya Nauka

Reference12 articles.

1. Samarskii A. A. Theory of difference schemes. Moscow, 1989. 616 р. (in Russian).

2. Samarskii A. A., Gulin A. A. Numerical methods. Moscow, 1989. 432 р. (in Russian).

3. Matus P. P., Vo Thi Kim Tuyen, Gaspar F. Monotone difference schemes for linear parabolic equations with mixed boundary conditions. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2014, vol. 58, no. 5, pp. 18–22 (in Russian).

4. Arbogast T., Wheeler M. F., Yotov I. Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM Journal on Numerical Analysis, 1997, vol. 34, no. 2, pp. 828–852. https://doi.org/10.1137/s0036142994262585

5. Crumpton P., Shaw G., Ware A. Discretization and multigrid solution of elliptic equations with mixed derivative terms and strongly discontinuous coefficients. Journal of Computational Physics, 1995, vol. 116, no. 2, pp. 343–358. https://doi.org/10.1006/jcph.1995.1032

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3