Preparation and characterization of recombinant human glutathione transferase P1 and screening of novel enzyme inhibitors

Author:

Gilevich S. N.1,Brechka Yu. V.1

Affiliation:

1. Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus

Abstract

Human glutathione transferase P1 (GSTP1) plays an important role in the second phase of xenobiotic biotransformation and in the regulation of apoptotic signal pathways. Directed screening of new enzyme inhibitors is an actual task since selective suppression of GSTP1 activity in tumor cells may substantially increase their sensitivity to chemotherapy. Known methods to obtain recombinant GSTP1 with a hexahistidine tag in the structure are complex, laborious, and suffer from significant losses of the enzyme activity. With the aim to create a simple and effective bacterial expression system for tagless GSTP1 posessing native structure and high activity, in the present work the full-length gstp1 gene was cloned into the pTXB1 plasmid vector, followed by transformation of E. coli cells. The optimized expression level amounted to 30–32 mg of the enzyme per liter of broth. Using glutathione-containing affinity membranes, the purified enzyme was isolated from bacterial lysate with the yield of 75.7 % and specific activity of 102.6 U/mg protein. The enzyme homogeneity was confirmed by gel-electrophoretic and mass-spectrometric data. Physico-chemical and catalytic properties of recombinant GSTP1 practically coincided with those of the native erythrocytary enzyme. The results of in silico and in vitro screening allowed to reveal structural factors and interactions determining the efficiency of the enzyme inhibition by carbocyclic and N-heterocyclic ligands. The preferable orientation of “good” inhibitors in the GSTP1 H-site was also established. Three strong enzyme inhibitors were found: 1,10-phenanthroline-5,6-dione, Alizarin Red S, and indigo carmine, with their respective IC50 values of 31, 16 and 2.3 μM. The new inhibitors are of certain interest for the development of novel lead structures with potential antitumor activity.

Publisher

Publishing House Belorusskaya Nauka

Subject

Inorganic Chemistry,Organic Chemistry,Chemistry (miscellaneous),Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3