Nanocomposites based on apatitic tricalcium phosphate and autofibrin

Author:

Glazov I. E.1,Krut’ko V. K.1,Vlasov R. A.2,Musskaya O. N.1,Kulak A. I.1

Affiliation:

1. Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

2. Medical-Center SANTE Ltd. “Medandrovit”

Abstract

Nanocomposites based on apatitic tricalcium phosphate in an autofibrin matrix were obtained by precipitation at a Ca/P ratio of 1.50, pH 9 and a maturation time from 30 min to 7–14 days. The resorbability of nanocomposites was determined by the composition of calcium phosphates, which, during long-term maturation, formed as the calcium-deficient hydroxyapatite with a Ca/P ratio of 1.66, whereas biopolymer matrix favored the formation of more soluble calcium phosphates with a Ca/P ratio of 1.53–1.59. It was found that the fibrin clot stabilized, along with apatitic tricalcium phosphate, the phase of amorphous calcium phosphate, which after 800 °C was transformed into resorbable α-tricalcium phosphate. Citrated plasma inhibited the conversion of apatitic tricalcium phosphate into stoichiometric hydroxyapatite, which also facilitated the formation of resorbable β-tricalcium phosphate after 800 °C. The combined effect of the maturation time and the biopolymer matrix determined the composition, physicochemical and morphological properties of nanocomposites and the possibililty to control its extent of resorption

Publisher

Publishing House Belorusskaya Nauka

Subject

Inorganic Chemistry,Organic Chemistry,Chemistry (miscellaneous),Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3