Affiliation:
1. Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
2. Medical-Center SANTE Ltd. “Medandrovit”
Abstract
Nanocomposites based on apatitic tricalcium phosphate in an autofibrin matrix were obtained by precipitation at a Ca/P ratio of 1.50, pH 9 and a maturation time from 30 min to 7–14 days. The resorbability of nanocomposites was determined by the composition of calcium phosphates, which, during long-term maturation, formed as the calcium-deficient hydroxyapatite with a Ca/P ratio of 1.66, whereas biopolymer matrix favored the formation of more soluble calcium phosphates with a Ca/P ratio of 1.53–1.59. It was found that the fibrin clot stabilized, along with apatitic tricalcium phosphate, the phase of amorphous calcium phosphate, which after 800 °C was transformed into resorbable α-tricalcium phosphate. Citrated plasma inhibited the conversion of apatitic tricalcium phosphate into stoichiometric hydroxyapatite, which also facilitated the formation of resorbable β-tricalcium phosphate after 800 °C. The combined effect of the maturation time and the biopolymer matrix determined the composition, physicochemical and morphological properties of nanocomposites and the possibililty to control its extent of resorption
Publisher
Publishing House Belorusskaya Nauka
Subject
Inorganic Chemistry,Organic Chemistry,Chemistry (miscellaneous),Analytical Chemistry