Approximation of the function |sin x| s by the partial sums of the trigonmometric rational fourier series

Author:

Kazlouskaya N. Yu.1,Rovba Ya. A.1

Affiliation:

1. Yanka Kupala State University of Grodno

Abstract

In the present article, the approximation of the function |sin x| s by the partial sums of the rational trigonometric Fourier series is considered. An integral representation, uniform and point estimates for the above-mentioned approximation were obtained. Based on them, several special cases of the selection of poles were studied. In the case of the approximation by the partial sums of the polynomial trigonometric Fourier series, an asymptotic equality was found. A detailed study is made of a fixed number of geometrically different poles.

Publisher

Publishing House Belorusskaya Nauka

Reference14 articles.

1. Bari N. K. Trigonometric series. Moscow, Fizmatgiz Publ., 1961. 937 p. (in Russian).

2. Edwards R. E. Fourier series: a modern introduction. Vol. 2. New York, 1967.

3. Takenaka S. On the orthogonal functions and a new formula of interpolations. Japanese Journal of Mathematics, 1925, vol. 2, pp. 129–145. https://doi.org/10.4099/jjm1924.2.0_129

4. Malmquist F. Sur la determination d’une classe functions analytiques par leurs dans un ensemble donne de points. Compte Rendus: Six. Cong. math. scand. Kopenhagen, 1925, pp. 253–259 (in French).

5. Dzhrbashian M. M. To Fourier series theory about rational functions. Izvestiya Akademii nauk Armyanskoi SSR. Seriya fiziko-matematicheskikh nauk [Proceedings of the Academy of Sciences of the Armenian SSR. Series of Physical and Mathematical Sciencies], 1956, vol. 9, no. 7, pp. 3‒28 (in Russian).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rate of Convergence for Double Rational Fourier Series;Complex Analysis and Operator Theory;2024-05

2. On the approximation of the | sin |s x function by rational trigonometric operators of the Fejér type;Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series;2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3