Middle- and far-infrared detector based on the plane collection of graphene strips
-
Published:2021-12-26
Issue:6
Volume:65
Page:661-667
-
ISSN:2524-2431
-
Container-title:Doklady of the National Academy of Sciences of Belarus
-
language:
-
Short-container-title:Dokl. Akad. nauk
Author:
Maksimenko S. A.1, Maffucci A.2, Portnoi M. E.3, Saroka V. A.4, Slepyan G. Y.5
Affiliation:
1. Institute for Nuclear Problems of the Belarusian State University 2. University of Cassino and Southern Lazio 3. University of Exeter, Exeter 4. Norwegian University of Science and Technology 5. Tel Aviv University
Abstract
A concept of a middle- and far-infrared detector has been proposed. The detector is built as a planar collection of parallel graphene strips of different length and width. The feature of the detector scheme is the concurrent utilization of two different detection mechanisms: excitation in the given frequency range of low-frequency interband transitions inherent in armchair graphene strips and antenna resonances of strongly slowed-down surface waves (plasmon polaritons). It has been shown that matching these two resonances results in the essential detector signal amplification, thus providing an alternative way how to solve the problem of the low efficiency of resonant graphene antennas. An approach is proposed to analyze the design of such detectors, as well as to discuss the ways of tuning the both mechanisms.
Publisher
Publishing House Belorusskaya Nauka
Reference15 articles.
1. Dhillon S. S., Vitiello M. S., Linfield E. H., Davies A. G., Hoffmann M. C., Booske J., Paoloni C., Gensch M., Weightman P., Williams G. P., Castro-Camus E., Cumming D. R. S., Simoens F., Escorcia-Carranza I., Grant J., Lucyszyn S., Kuwata-Gonokami M., Konishi K., Koch M., Schmuttenmaer C. A., Cocker T. L., Huber R., Markelz A. G., Taylor Z. D., Wallace V. P., Zeitler J A., Sibik J., Korter T. M., Ellison B., Rea S., Goldsmith P., Cooper K. B., Appleby R., Pardo D., Huggard P. G., Krozer V., Shams H., Fice M., Renaud C., Seeds A., Stöhr A., Naftaly M., Ridler N., Clarke R., Cunningham J. E., Johnston M. B. The 2017 terahertz science and technology roadmap. Journal of Physics D: Applied Physics, 2017, vol. 50, no. 4, art. 043001 (1–49). https://doi.org/10.1088/1361-6463/50/4/043001 2. Hartmann R. R., Kono J., Portnoi M. E. Terahertz science and technology of carbon nanomaterials. Nanotechnology, 2014, vol. 25, no. 32, art. 322001 (1–16). https://doi.org/10.1088/0957-4484/25/32/322001 3. Batrakov K., Maksimenko S. Graphene layered systems as a terahertz source with tuned frequency. Physical Review B, 2017, vol. 95, no. 20, art. 205408 (1–8). https://doi.org/10.1103/physrevb.95.205408 4. Ryzhii V., Ryzhii M., Ryabova N., Mitin V., Otsuji T. Terahertz and infrared detectors based on graphene structures. Infrared Physics & Technology, 2011, vol. 54, no. 3, pp. 302–305. https://doi.org/10.1016/j.infrared.2010.12.034 5. Vicarelli L., Vitiello M. S., Coquillat D., Lombardo A., Ferrari A. C., Knap W., Polini M., Pellegrini V., Tredicucci A. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 2012, vol. 11, no. 10, pp. 865–871. https://doi.org/10.1038/nmat3417
|
|