Middle- and far-infrared detector based on the plane collection of graphene strips

Author:

Maksimenko S. A.1,Maffucci A.2,Portnoi M. E.3,Saroka V. A.4,Slepyan G. Y.5

Affiliation:

1. Institute for Nuclear Problems of the Belarusian State University

2. University of Cassino and Southern Lazio

3. University of Exeter, Exeter

4. Norwegian University of Science and Technology

5. Tel Aviv University

Abstract

A concept of a middle- and far-infrared detector has been proposed. The detector is built as a planar collection of parallel graphene strips of different length and width. The feature of the detector scheme is the concurrent utilization of two different detection mechanisms: excitation in the given frequency range of low-frequency interband transitions inherent in armchair graphene strips and antenna resonances of strongly slowed-down surface waves (plasmon polaritons). It has been shown that matching these two resonances results in the essential detector signal amplification, thus providing an alternative way how to solve the problem of the low efficiency of resonant graphene antennas. An approach is proposed to analyze the design of such detectors, as well as to discuss the ways of tuning the both mechanisms.

Publisher

Publishing House Belorusskaya Nauka

Reference15 articles.

1. Dhillon S. S., Vitiello M. S., Linfield E. H., Davies A. G., Hoffmann M. C., Booske J., Paoloni C., Gensch M., Weightman P., Williams G. P., Castro-Camus E., Cumming D. R. S., Simoens F., Escorcia-Carranza I., Grant J., Lucyszyn S., Kuwata-Gonokami M., Konishi K., Koch M., Schmuttenmaer C. A., Cocker T. L., Huber R., Markelz A. G., Taylor Z. D., Wallace V. P., Zeitler J A., Sibik J., Korter T. M., Ellison B., Rea S., Goldsmith P., Cooper K. B., Appleby R., Pardo D., Huggard P. G., Krozer V., Shams H., Fice M., Renaud C., Seeds A., Stöhr A., Naftaly M., Ridler N., Clarke R., Cunningham J. E., Johnston M. B. The 2017 terahertz science and technology roadmap. Journal of Physics D: Applied Physics, 2017, vol. 50, no. 4, art. 043001 (1–49). https://doi.org/10.1088/1361-6463/50/4/043001

2. Hartmann R. R., Kono J., Portnoi M. E. Terahertz science and technology of carbon nanomaterials. Nanotechnology, 2014, vol. 25, no. 32, art. 322001 (1–16). https://doi.org/10.1088/0957-4484/25/32/322001

3. Batrakov K., Maksimenko S. Graphene layered systems as a terahertz source with tuned frequency. Physical Review B, 2017, vol. 95, no. 20, art. 205408 (1–8). https://doi.org/10.1103/physrevb.95.205408

4. Ryzhii V., Ryzhii M., Ryabova N., Mitin V., Otsuji T. Terahertz and infrared detectors based on graphene structures. Infrared Physics & Technology, 2011, vol. 54, no. 3, pp. 302–305. https://doi.org/10.1016/j.infrared.2010.12.034

5. Vicarelli L., Vitiello M. S., Coquillat D., Lombardo A., Ferrari A. C., Knap W., Polini M., Pellegrini V., Tredicucci A. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 2012, vol. 11, no. 10, pp. 865–871. https://doi.org/10.1038/nmat3417

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3