Influence of the dispersion method of modified layered silicate on the structure and properties of mixed composites based on polyamide and functionalized polyolefin

Author:

Pesetskii S. S.1ORCID,Krivoguz Yu. M.1ORCID,Bogdanovich S. P.1

Affiliation:

1. V. A. Belyi Metal-Polymer Research Institute of the National Academy of Sciences of Belarus

Abstract

The dependences of the structure and properties of polyamide 6 (PA6) with a functionalized polyolefin (FPO) mixtures on the dispersing method of organically modified clay Cloisite 30В (Cl30В) were studied. The concentration of Cl30B organoclay in PA6/fPO mixtures was constant and amounted to 3.0 wt.%, and the content of fPO varied from 10 to 50 wt.%. Compounding of the mixtures was carried out in the melt using a twin-screw extrusion reactor-mixer. Organoclay was introduced into the composition of the mixtures in two ways: simultaneously with all polymer components (one-stage process) and from the previously obtained Cl30B concentrate into fPO (two-stage process). It is established that the introduction of Cl30B organoclay into the composition of the PA6/fPO mixture using the two-stage technology makes it possible to obtain nanocomposites with increased yield strengths (5–6 %), tensile strength (9–15 %), and elongation at break (1.2–4 times) compared with nanocomposites prepared according to a single-stage technology. At the same time, nanocomposites obtained by a single-stage technology in which PA6 forms a dispersion medium, regardless of the type of incision and the test method, have higher impact resistance (up to 1.2 times) than materials prepared by the two-stage method. This is explained by differences in the degree of dispersion of the nanofiller and the level of interphase interactions between the polymer components and nanoparticles, as a result of which the crystallinity of the components in the mixtures changes, as well as the complex of their rheological and mechanical characteristics. It was also shown that Cl30B organoclay additives, irrespective to the method of its introduction, increase the thermal stability of PA 6/fPO mixtures in comparison with the initial PA6. The results can be used in the development of real technical nanocomposites with improved properties based on PA6 and fPO.

Publisher

Publishing House Belorusskaya Nauka

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3