Affiliation:
1. Institute of Mathematics of the National Academy of Sciences of Belarus
Abstract
The minimal polynomials of the images of the unipotent elements of non-prime order in the irreducible representations of an algebraic group of type F4 in characteristics 3 and 7 are found. This completes the solution of the minimal polynomial problem for unipotent elements in the irreducible representations of such a group in an odd characteristic.
Publisher
Publishing House Belorusskaya Nauka
Reference8 articles.
1. Suprunenko I. D. Minimal polynomials of elements of order p in irreducible representations of Chevalley groups over fields of characteristic p. Siberian Advances in Mathematics, 1996, vol. 6, pp. 97–150.
2. Suprunenko I. D. The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic. Memoirs of the AMS, 2009, vol. 200, no. 939. https://doi.org/10.1090/memo/0939
3. Busel T. S., Suprunenko I. D., Testerman D. Minimal polynomials of unipotent elements of non-prime order in irreducible representations of the exceptional algebraic groups in some good characteristics. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2019, vol. 63, no. 5, pp. 519–525. https://doi.org/10.29235/1561-8323-2019-63-5-519-525
4. Hall P., Higman G. On the p-length of p-soluble groups and reduction theorem for Burnside’s problem. Proceedings of the London Mathematical Society, 1956, vol. s3-6, no. 1, pp. 1–42. https://doi.org/10.1112/plms/s3-6.1.1
5. Steinberg R. Lectures on Chevalley groups. Mimeographed lecture notes. Yale Univ. Math. Dept., New Haven, Conn., 1968.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Irina Dmitrievna Suprunenko (04.02.1954–10.08.2022);European Journal of Mathematics;2024-02-12
2. Памяти Ирины Дмитриевны Супруненко;Trudy Instituta Matematiki i Mekhaniki UrO RAN;2023-03