On the influence of the dark substance on electromagnetic radiation in space

Author:

Ryabushko A. P.1,Zhur T. A.2

Affiliation:

1. Belarusian National Technical University

2. Belarusian State Agrarian Technical University

Abstract

   This paper investigates the influence of the gravitational fields of dark matter and dark energy, the existence of which is currently firmly established, on electromagnetic radiation in space. In the post-Newtonian approximation of the general theory of relativity, a regularity is derived that generalizes the well-known Shapiro time delay (Shapiro effect) to estimate the delay of a light beam during the Mercury location. The generalization consists of the fact that in addition to the gravitational field of the central mass, the influence of the gravitational fields of the visible (observed) medium and dark substance on the processes in space is taken into account. The cases of location of the planet Mercury and the star near the center of our Galaxy in gravitational fields created by a spherically symmetrically distributed medium are considered. Estimates of the delays of location signals are calculated, which can exceed the time delays of signals in a space not filled with a medium by several orders of magnitude. A method for estimating the density of a dark substance is indicated if the experimental estimate of the location signal delay is known. This method is illustrated by the location of Mercury as an example.

Publisher

Publishing House Belorusskaya Nauka

Subject

Computational Theory and Mathematics,General Physics and Astronomy,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3