THERMAL EFFECTS IN THE EYE-SAFE RING OPTICAL PARAMETRIC OSCILLATOR BASED ON KTiOPO4 CRYSTALS

Author:

Rusak A. A.,Dashkevich U. I.,Orlovich V. A.,Shradarevich A. P.

Abstract

For an eye-safe optical parametric oscillator (OPO) built on the basis of a three-mirror ring cavity, each section of which (the space between adjacent plane mirrors) contains a x-cut KTiOPO4 (KТР) crystal having a size of 15(х) × 7(y) × 7(z) mm3, the thermal effects due to idler wave absorption in KTP crystals were investigated. These thermal effects were evaluated by means of experimental measurement of the change in the OPO performance (divergence of the output beam and pulse energy) when transferring the OPO from the mode of generation of occasional single pulses to the mo de of generation of periodically repetitive pulses. It was found when the eye-safe OPO pumped by multimode YAG: Nd laser radiation generates 8-ns pulses with a repetition rate of 10 Hz and an energy of 30–35 mJ, thermal distortions of KTP crystals placed in metal holders at their natural air-cooling, are moderate. The total effect of positive thermolenses induced in nonlinear crystals leads to an increase in the divergence of the beam of the eye-safe OPO by 10 % and to a decrease in the efficiency of the OPO by 0.76 %, by virtue of fact that the induced thermal lenses are not ideal and thereby introduce additional aberration losses into the OPO cavity. The theoretical simulation of the OPO operation in the plane-wave approximation with the use of a system of three coupled first-order abridged differential equations showed that among three KTP crystals the KTP crystal placed first in the path of pump radiation in the OPO is the largest thermal load and the action of the most intense beams.

Publisher

Publishing House Belorusskaya Nauka

Subject

Computational Theory and Mathematics,General Physics and Astronomy,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3