The formation of Bessel light beams at large distances from annular fields

Author:

Khilo N. A.1,Ropot P. I.1,Petrov P. K.1,Belyi V. N.1

Affiliation:

1. B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus

Abstract

In this work, the process of transformation of an annular beam in a Bessel-like field due to diffraction during propagation in a free space over long distances and due to the focusing effect is investigated. A number of models of annular fields are considered, including an analytical model in the form of a polynomial function in a bounded region of space, as well as an experimentally implemented model based on a scheme with two axicons. A comparison is made of the transverse and longitudinal intensity distributions for these models, and a high degree of stability of the structure of the longitudinal distribution of the axial intensity to a change in the model of the annular field is found. This distribution is characterized by the presence of an intense maximum with an asymmetric profile, the appearance of which is not connected with lens focusing. In the initial region of the pointed maximum, the process of formation of a Bessel beam from an annular beam arises, and a sharp increase in intensity takes place. It is also established that the focusing of an annular field at large distances essentially differs from focusing at short distances. In the case of large distances, the increase of the axial intensity does not take place in the vicinity of the focal plane, but much closer to the transmitter, and here the great increase of intensity caused by direct focusing is not identified. The transverse profile of a Bessel-like beam is calculated at large distances. It is shown that this profile is characterized by a small number of lateral rings, and the axial maximum and the first ring contain more than 90% of the light power. The problem of generation of a model annular field by a Fourier-type resonator with a special transparency mirror is considered.

Publisher

Publishing House Belorusskaya Nauka

Subject

Computational Theory and Mathematics,General Physics and Astronomy,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diffraction of displaced Gaussian light beams on ultrasound in paratellurite crystals;Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series;2024-07-09

2. Diffraction of Annular Light Beams by Ultrasound in Paratellurite Crystals;2024 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF);2024-06-03

3. Longitudinal Distribution of the Maximum Intensity in Bessel Light Beams of Zero and Higher Orders**;Journal of Applied Spectroscopy;2023-06-24

4. Peculiarities of the Gaussian beam transformation in the optical scheme with an axicon and a biaxial crystal;Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series;2022-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3