Approximate evaluation of the functional integrals generated by the Dirac equation with pseudospin symmetry

Author:

Ayryan Е. A.1,Hnatic М.2,Malyutin V. В.3

Affiliation:

1. Laboratory of Information Technologies, Joint Institute for Nuclear Research; State University «Dubna»

2. Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research; Institute of Experimental Physics, Slovak academy of Sciences; Faculty of Sciences, P. J. Šafárik University in Košice

3. Institute of Mathematics of the National Academy of Sciences of Belarus

Abstract

 In this paper, the matrix-valued functional integrals generated by the Dirac equation with relativistic Hamiltonian are considered. The Dirac Hamiltonian contains scalar and vector potentials. The sum of the scalar and vector potentials is equal to zero, i.e., the case of pseudospin symmetry is investigated. In this case, a Schrödinger-type equation for the eigenvalues and eigenfunctions of the relativistic Hamiltonian generating the functional integral is constructed. The eigenvalues and eigenfunctions of the Schrödinger-type operator are found using the Sturm sequence method and the reverse iteration method. A method for the evaluation of matrix-valued functional integrals is proposed. This method is based on the relation between the functional integral and the kernel of the evolution operator with the relativistic Hamiltonian and the expansion of the kernel of the evolution operator in terms of the found eigenfunctions of the relativistic Hamiltonian. 

Publisher

Publishing House Belorusskaya Nauka

Subject

General Medicine

Reference13 articles.

1. Glimm J., Jaffe A. Quantum Physics. A Functional Integral Point of View. Berlin, Heidelberg, New York, SpringerVerlag, 1981. 417 p.

2. Kleinert H. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets. Singapore, World Scientific Publishing, 2004. 1504 p. https://doi.org/10.1142/5057

3. Feynman R. P., Hibbs A. R. Quantum Mechanics and Path Integrals. New York, McGraw-Hill, 1965. 382 p.

4. Egorov A. D., Sobolevsky P. I., Yanovich L. A. Functional Integrals: Approximate Evaluation and Applications. Dordrecht, Kluwer Academic Pabl., 1993. 400 p. https://doi.org/10.1007/978-94-011-1761-6

5. Egorov A. D., Zhidkov Е. P., Lobanov Yu. Yu. Introduction to Theory and Applications of Functional Integration. Мoscow, Fizmatlit Publ., 2006. 400 p. (in Russian).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3