Motion of the relativistic center of mass of the two-body system in the environment

Author:

Ryabushko A. P.1,Nemanova I. T.2,Zhur T. A.2

Affiliation:

1. Belarusian National Technical University.

2. Belarusian State Agrarian Technical University.

Abstract

The motion equations for a system of two bodies moving in a medium are derived in the Cartesian coordinate system in the Newtonian theory. The coordinate system is barycentric, that is, the center of mass of the two-body system is immobile. Using the Einstein – Infeld approximation procedure, the gravitational field created by the “two bodies – medium” system was found from the Einstein field equations, and then the equations of motion of the bodies in this field were obtained.It is shown that in the post-Newtonian approximation of the general theory of relativity, the center of mass of two bodies moving in a gas – dust rarefied medium of constant density, determined by analogy with the Newtonian center of mass, is displaced along the cycloid, although in the Newtonian approximation it is stationary, i.e. the movement along the cycloid occurs with respect to the barycentric Newtonian fixed reference frame. Numerical estimates are given for the magnitude of this displacement. Given a popular value of the medium density ρ = 10–21 g·cm–3 its order can reach 106 km per one rotation of two bodies around their center of mass. In the case of the equality of masses of the bodies, their relativistic center of mass, like their Newtonian center of mass, is immobile.It has been hypothesized that for any elliptical orbits of two bodies and an inhomogeneous distribution of the gas – dust medium the qualitative picture of motion of the relativistic center of mass of the two bodies will not change.

Publisher

Publishing House Belorusskaya Nauka

Subject

General Medicine

Reference10 articles.

1. Ryabushko A. P, Nemanova I. T. The gravitational field of the attracting center surrounded by a dust cloud, in the post-Newtonian approximation of the general theory of relativity. Doklady Akademii nauk BSSR = Doklady of the Academy of Sciences of BSSR, 1983, vol. 27, no. 10, pp. 889–892 (in Russian).

2. Ryabushko A. P, Nemanova I. T. Relativistic effects of motion of test bodies in a gas-dust ball with an attractive center. Doklady Akademii nauk BSSR = Doklady of the Academy of Sciences of BSSR, 1984, vol. 28, no. 9, pp. 806–809 (in Russian).

3. Ryabushko A. P, Nemanova I. T. The gravitational field of a gas-dust ball with two attractive centers in the general theory of relativity. Doklady Akademii nauk BSSR = Doklady of the Academy of Sciences of BSSR, 1987, vol. 31, no. 6, pp. 519–522 (in Russian).

4. Nemanova I. T. Relativistic Motion of Bodies in a Medium. Minsk, Belarusian State University, 1987. 152 p. (in Russian).

5. Landau L. D., Lifshic Е. М. Mechanics. Moscow, Naukа Publ., 1965. 316 p. (in Russian).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ρ-Libration point in the three body problem;Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series;2021-10-07

2. The motion of the system of two bodies and their center of mass in an inhomogeneous environment;Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series;2020-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3