Howe duality of Higgs – Hahn algebra for 8D harmonic oscillator

Author:

Lavrenov А. N.1ORCID,Lavrenov I. A.2ORCID

Affiliation:

1. Belarusian State Pedagogical University Named After Maxim Tank

2. Octonion Technology Ltd.

Abstract

In the light of the Howe duality, two different, but isomorphic representations of one algebra as Higgs algebra and Hahn algebra are considered in this article. The first algebra corresponds to the symmetry algebra of a harmonic oscillator on a 2-sphere and a polynomially deformed algebra SU(2), and the second algebra encodes the bispectral properties of corresponding homogeneous orthogonal polynomials and acts as a symmetry algebra for the Hartmann and certain ring-shaped potentials as well as the singular oscillator in two dimensions. The realization of this algebra is shown in explicit form, on the one hand, as the commutant O(4) ⊕ O(4) of subalgebra U(8) in the oscillator representation of universal algebra U (u(8)) and, on the other hand, as the embedding of the discrete version of the Hahn algebra in the double tensor product SU(1,1) ⊗ SU(1,1). These two realizations reflect the fact that SU(1,1) and U(8) form a dual pair in the state space of the harmonic oscillator in eight dimensions. The N-dimensional, N-fold tensor product SU(1,1)N аnd q-generalizations are briefly discussed.

Publisher

Publishing House Belorusskaya Nauka

Subject

Computational Theory and Mathematics,General Physics and Astronomy,General Mathematics

Reference31 articles.

1. Granovskii Ya. I., Zhedanov, A. S. Exactly Solvable Problems and their Quadratic Algebras. Donetsk, DonFTI, 1989. 40 р. (in Russian).

2. Zhedanov A. S. Hidden symmetry of the Askey – Wilson polynomials. Theoretical and Mathematical Physics, 1991, vol. 89, no. 2, pp. 1146–1157. https://doi.org/10.1007/bf01015906

3. Granovskii Ya. I., Zhedanov A. S., Lutsenko I. M. Quadratic algebras and dynamical symmetry of the Schrödinger equation. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki = Journal of Experimental and Theoretical Physics, 1991, vol. 99, no. 2, pp. 353–361 (in Russian).

4. Granovskii Y. I., Lutsenko I. M., Zhedanov A. S. Mutual integrability, quadratic algebras, and dynamical symmetry. Annals of Physics, 1992, vol. 217, no. 1, pp. 1–20. https://doi.org/10.1016/0003-4916(92)90336-k

5. Lutsenko I. M. Jacobi algebra and potentials generated by it. Theoretical and Mathematical Physics, 1992, vol. 93, no. 1, pp. 1081–1090. https://doi.org/10.1007/bf01016465

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3