Low-frequency capacitor with hopping electrical conductivity of the working substance (on the example of a-Si:H)

Author:

Poklonski N. A.1ORCID,Anikeev I. I.1ORCID,Vyrko S. A.1ORCID

Affiliation:

1. Belarusian State University

Abstract

We propose a structural and electrical schemes of a capacitor based on a 3 μm thick a-Si:H (amorphous hydrogenated silicon) layer separated from the metal plates by 0.3 μm thick dielectric layers of SiO2 (silicon dioxide). We consider room temperatures (T ≈ 300 K) when in the absence of illumination for a-Si:H the hopping mechanism of electron migration via point defects of the structure prevails. For such a capacitor, the dependencies of the capacitance on the frequency of the measuring signal ω/2π in the range from 0.1 to 300 Hz are calculated for the a-Si:H layer with stationary hopping electrical conductivity σdc ≈ 1 ∙ 10−10 (Ohm ∙ cm)−1. It is assumed that there is no end-to-end electron transfer between the a-Si:H layer, dielectric layers and capacitor plates in the small-signal mode of capacitance measurement. It is shown that the real part of the capacitance of the capacitor decreases with increasing angular frequency ω, and the imaginary part is negative and depends non-monotonically on ω. The decrease in the real part of the device capacitance to the geometric capacitance of the series-connected oxide layers and the a-Si:H layer with increasing ω is due to a decrease in the electrical resistance of the capacitor. As a result, with increasing ω, the imaginary part of the capacitance is shunted by the hopping electrical conductivity of the capacitor. The phase shift for a sinusoidal electrical signal supplied to the capacitor is determined depending on the frequency ω/2π in the range of 0.1–300 Hz for the values of electrical conductivities of the hydrogenated amorphous silicon layer σdc ≈ 1 ∙ 10−11, 1 ∙ 10−10, and 1 ∙ 10−9 (Ohm ∙ cm)−1 at the temperature 300 K. With an increase in the electrical conductivity σdc of the a-Si:H layer, the minimum absolute value of the phase shift angle (≈65°) shifts to the high- frequency region (from 1 to 100 Hz). The proposed low-frequency capacitor can find application in electrical circuits for detecting low-frequency electrical signals for the purposes of biomedicine.

Publisher

Publishing House Belorusskaya Nauka

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3