Proteomic analysis of <i>Pseudomonas chlororaphis</i> subsp. <i>aurantiacа</i> strains capable of phenasine compounds overproduction

Author:

Verameyenka K. G.1,Shapira M. A.2,Naumouskaya V. A.3,Ashmankevich D. D.4,Maximova N. P.1

Affiliation:

1. Belarusian State University

2. Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus

3. Wroclaw University of Natural Sciences

4. Center for Examinations and Tests in Health Service Republican Unitary Enterprise

Abstract

Proteomic analysis is a highly effective method for bacteria identification and the elucidation of protein's content in prokaryotic cells at different growth conditions. To our knowledge this approach is hardly ever used for characterization of producers of biologically active substances. The understanding of the changes in protein profile in mutant strains capable of biologically active substances overproduction helps to recognize the biochemical and molecular basis of metabolic changes which lead to overproduction. So that, proteomic analysis could be especially useful for optimization the producer's creation techniques.The purpose of current research was to carry out proteomic profiling of bacteria P. chlororaphis subsp. aurantiaca mutant strains capable of overproduction of phenazine antibiotics. Microbiological and biochemical methods were used for these aims.In current research a proteomic analysis of strains of P. chlororaphis subsp. aurantiaca producing phenazines was carried out. An early (during log-phase) onset of expression of individual genes of phz-operon which codes enzymes for phenazines synthesis was demonstrated. It was also found that the wild type strain has the highest level of PhzO protein. The gene encoding this protein is located outside the phz-operon. We weren't able to establish the correlation among PhzO protein content and concentration of the derivatives for which appearance PhzO is responsible. A general tendency of producer strains towards the accumulation of enzymes and proteins of the antioxidant defense system was revealed. Producer strains also demonstrate a significant increase in the concentration of proteins involved in DNA repair as well as chaperones involved in the native protein conformation maintenance.

Publisher

Publishing House Belorusskaya Nauka

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3