Performance Evaluation of the Pressurized Synhelion Absorbing Gas Receiver

Author:

Zavattoni Simone A.ORCID,Good Philipp,Geissbühler Lukas,Rutz David,Toffanin Riccardo,Montorfano Davide,Ambrosetti Gianluca,Barbato Maurizio C.ORCID

Abstract

The pressurized design of the Synhelion absorbing gas receiver concept has been presented. Despite its intrinsic increased design complexity, foreseen advantages such as receiver downscaling and more compact piping and insulation systems were the drivers for the initial development of the 250 kWth receiver design operating at high pressure (10 bar absolute). The latter was driven by the results of specific computational fluid dynamics (CFD) simulations aimed at evaluating the receiver thermo-fluid dynamics behaviour along with the relative performance. This paper shows the results of the two initial CFD simulations campaigns aimed at evaluating the effect, on the receiver performance, of the integration of absorbing inserts (i.e., a series of concentric disks specifically arranged into the cavity to capture the incoming concentrated solar radiation) and the position and shape of the inlet section of the heat transfer fluid. The simulations results allowed not only to evaluate the receiver performance, in terms of thermal efficiency, but also to observe some criticalities related to the motion of the HTF through the receiver.

Funder

Bundesamt für Energie

Publisher

TIB Open Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3